

Journal of Organometallic Chemistry 502 (1995) 61-65

Dialkylaminophosphorus metal carbonyls XIII *. Structure of a tertiary alcohol $[({}^{i}Pr_{2}NP)_{2}C(OH)R]Fe_{2}(CO)_{6}$ and the effect of carbon hybridization on the geometry of the $CP_{2}Fe_{2}$ cage

V. Kumar, D.W. Lee, M.G. Newton, R.B. King *

Department of Chemistry, University of Georgia, Athens, GA 30602, USA

Received 8 May 1995

Abstract

Reaction of $({}^{i}Pr_{2}NP)_{2}COFe_{2}(CO)_{6}$ with benzyllithium (from PhCH₂SnPh₃ + *n*-BuLi) gives the corresponding tertiary alcohol $({}^{i}Pr_{2}NP)_{2}C(CH_{2}Ph)(OH)Fe_{2}(CO)_{6}$, which has been characterized structurally by X-ray diffraction (monoclinic; space group, $P2_{1}/a$; a = 9.797(1), b = 16.593(1) and c = 19.671(2) Å; $\beta = 101.564(9)^{\circ}$; Z = 4). A comparison of the geometries of the CP₂Fe₂ cages in the series (${}^{i}Pr_{2}NP)_{2}C(CH_{2}Ph)(OH)Fe_{2}(CO)_{6}$ and $[({}^{i}Pr_{2}NP)_{2}CHSiMe_{3}]Fe_{2}(CO)_{6}$ with P-C(sp³)-P bridges and (${}^{i}Pr_{2}NP)_{2}COFe_{2}(CO)_{6}$, $({}^{i}Pr_{2}NP)({}^{t}Bu_{2}PP)COFe_{2}(CO)_{6}$, and (${}^{t}BuP)_{2}COFe_{2}(CO)_{6}$ with P-C(sp²)-P bridges indicates that changing the P bridging (i.e. cage) carbon atom from sp³ hybridization to sp² hybridization increases the P-C-P bond angle from 78-80 to 84-86^{\circ}, the P-Fe-P bond angles from 64-67 to 69-70^{\circ}, and the non-bonding P · · · P distance from 2.44 to 2.53-2.55 Å while having relatively little effect on the P-C, Fe-P and Fe-Fe distances.

Keywords: Iron; Dialkylaminophosphorus metal carbonyls; Alcohol; Stereochemistry; Cage compound; Phosphorus

1. Introduction

Our first detailed report [2] on the chemical reactivity of the phosphorus-bridging carbonyl derivative $({}^{i}Pr_{2}NP)_{2}COFe_{2}(CO)_{6}$ (I) included its reactions with the organolithium compounds RLi (R = Me or *n*-Bu) to give the corresponding tertiary alcohols (${}^{i}Pr_{2}NP)_{2}$ -CR(OH)Fe₂(CO)₆ (II). However, none of these tertiary alcohols was characterized structurally by X-ray diffraction. We have now obtained the closely related tertiary alcohol (${}^{i}Pr_{2}NP)_{2}C(CH_{2}Ph)(OH)Fe_{2}(CO)_{6}$ (II)(R = CH₂Ph) by an analogous reaction of (${}^{i}Pr_{2}NP)_{2}COFe_{2}$ -(CO)₆ (I) with the benzyllithium obtained by transmetallation of PhCH₂SnPh₃ with *n*-butyllithium [3,4] and report here the structure of this tertiary alcohol. In addition, we review available structural data on CP_2Fe_2 cages in iron carbonyl derivatives and make some observations on the geometry of these cages relative to the carbon hybridization.

2. Experimental section

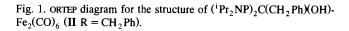
The general experimental conditions are the same as described in an earlier paper of this series [2]. The $({}^{i}Pr_{2}NP)_{2}COFe_{2}(CO)_{6}$ was prepared by the published procedure [5] and the other reagents were commercial products (Aldrich Chemical Company).

2.1. Preparation of $({}^{i}Pr_{2}NP)_{2}C(CH_{2}Ph)(OH)Fe_{2}(CO)_{6}$

A solution of 0.8 g (1.8 mmol) of PhCH₂SnPh₃ in 25 ml of diethyl ether was treated at -78° C with 2.5 ml of 1.6 M *n*-butyllithium in hexane (4.0 mmol) and the mixture slowly allowed to warm to room temperature.

 a^{\pm} For part XII, see [1]. This paper is dedicated to Professor Henri Brunner in recognition of his many contributions to organometallic chemistry.

[•] Corresponding author.


Table 1			
Crystal data for CH ₂ Ph)	$({}^{i}\mathrm{Pr}_{2}\mathrm{NP})_{2}\mathrm{C(CH}_{2}\mathrm{Ph})(\mathrm{OH})\mathrm{Fe}_{2}(\mathrm{CO})_{6}$	(II)	(R =
0112111)			

Empirical formula	$C_{26}H_{36}N_2O_7P_2Fe_2$
Molecular weight	663.23
Crystal dimensions (mm)	$0.40 \times 0.20 \times 0.20$
Crystal system	Monoclinic
Space group	$P2_1 / a$ (No. 14)
a (Å)	9.797(1)
b (Å)	16.593(1)
<i>c</i> (Å)	19.671(2)
β (°)	101.564(9)
$V(Å^3)$	3132.8(5)
F(000)	1380
μ (Cu K α) (cm ⁻¹)	87.62
$D_{\text{calc}} (\text{g cm}^{-3})$	1.406
Ζ	4
Number of total reflections	6786
Number of observed reflections	3860
Octants collected	$+h, +k, \pm l$
R	0.056
R _w	0.079

After adding 1.12 g (2.0 mmol) of (ⁱPr₂NP)₂COFe₂- $(CO)_6$, the reaction mixture was stirred overnight at room temperature. Solvent was then removed in vacuum and the residue extracted with hexane. Concentration of the hexane extract gave brownish crystals. The product was purified by dissolving in a minimum of a CH_2Cl_2 -hexane mixture and passing the solution through a 1.2 cm layer of silica gel on a Schlenk filter. Concentration of the filtrate and cooling gave 0.4 g (33% yield) of yellow crystalline $(^{i}Pr_{2}NP)_{2}C$ - $(CH_2Ph)(OH)Fe_2(CO)_6$ (II) $(R = CH_2Ph)$ (melting point, 158-160°C). IR (hexane): v(CO) 2051s, 2006s, 1990s, 1957m, and 1939 cm⁻¹. ³¹P{¹H} NMR (CDCl₃): δ 192.0 (singlet, relative to H₃PO₄) ppm. ¹H NMR $(CDCl_3) \delta$ 7.2–7.4 (benzenoid CH; obscured partially by CDCl₃), 4.40 (singlet OH), 3.51 (triplet, 5 Hz; benzyl CH₂), 3.41 (septet, 7 Hz; isopropyl CH), 1.04 (doublet, 7 Hz), 0.93 (doublet, 7 Hz; isopropyl CH₃) ppm. Anal. Found: C, 47.2; H, 5.4; N, 4.1. C₂₆H₃₆-Fe₂N₂P₂O₇: Calc.: C, 47.1; H, 5.4; N, 4.2%.

2.2. Structure determination of $({}^{1}Pr_{2}NP)_{2}C(CH_{2}Ph)-(OH)Fe_{2}(CO)_{6}$

A yellow prismatic crystal of $C_{26}H_{36}N_2O_7P_2Fe_2 = (^{i}Pr_2NP)_2C(CH_2Ph)(OH)Fe_2(CO)_6$ from $CH_2Cl_2 - (CO)_6$

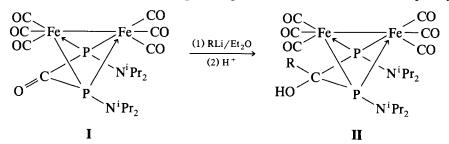
Fe1

P1

C12

C24

C25


C20

C8

C11

hexane having approximate dimensions $0.40 \times 0.20 \times$ 0.20 mm was fixed in a random orientation on a glass fiber and mounted on an Enraf-Nonius CAD-4 diffractometer equipped with a graphite crystal monochromator. Cell constants and an orientation matrix for data collection were obtained from a least-squares refinement using the setting angles of 25 carefully centered reflections in the range $10.00^{\circ} < 2\theta < 40.00^{\circ}$. Intensity data using Cu K α radiation ($\lambda = 1.541$ 84 Å) were collected at a temperature of $23 \pm 1^{\circ}$ C over a θ range of 2-75° using the ω -2 θ technique. Of the 7097 reflections which were collected, 6786 were unique $(R_{int} = 0.030)$. The intensities of three representative reflections were measured after every 120 min of X-ray exposure time. No decay correction was applied. The linear absorption coefficient μ for Cu K α radiation is 87.6 cm⁻¹. An empirical absorption correction based on azimuthal scans of several reflections was applied which resulted in transmission factors ranging from 0.81 to 0.99. The data were corrected for Lorentz and polarization effects. A correction for secondary extinction was applied (coefficient, 1.289 86×10^{-6}).

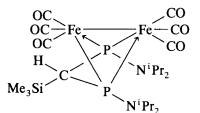
The structure was solved by direct methods [6] and expanded using Fourier techniques [7]. All non-hydrogen atoms were refined anisotropically. The final cycle

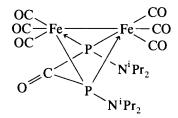
m 1 1

Table 3

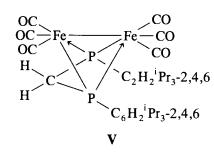
Table 2 Selected bond distances (Å) for $({}^{i}Pr_{2}NP)_{2}C(CH_{2}Ph)(OH)Fe_{2}(CO)_{6}$ (II) (R = CH₂Ph)

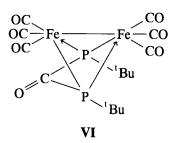
$(\mathbf{n})(\mathbf{k} - \mathbf{C}\mathbf{n}_2\mathbf{n})$	· II)		
Fe(1)-Fe(2)	2.613(2)	Fe(1)-P(1)	2.216(2)
Fe(1) - P(2)	2.219(2)	Fe(1) - C(1)	1.756(8)
Fe(1) - C(2)	1.788(9)	Fe(1)-C(3)	1.768(8)
Fe(2) - P(1)	2.227(2)	Fe(2) - P(2)	2.260(2)
Fe(2)-C(4)	1.758(8)	Fe(2) - C(5)	1.764(9)
Fe(2) - C(6)	1.792(9)	P(1) - N(1)	1.665(6)
P(1)-C(19)	1.911(6)	P(2) - N(2)	1.656(6)
P(2)-C(19)	1.903(7)	O(1)-C(1)	1.145(9)
O(2)–C(2)	1.149(9)	O(3)-C(3)	1.156(9)
O(4) - C(4)	1.149(9)	O(5) - C(5)	1.147(9)
O(6)-C(6)	1.136(9)	O(7)-C(19)	1.412(7)
N(1) - C(7)	1.518(9)	N(1)-C(10)	1.488(9)
N(2)-O(13)	1.516(9)	N(2)-C(16)	1.504(9)


of full-matrix least-squares refinement was based on 3860 observed reflections $(I > 3\sigma(I))$ and 353 variable parameters and converged (largest parameter shift was 0.03 times its estimated standard deviation) with unweighted and weighted agreement factors of R = 0.056 and $R_w = 0.079$. Neutral atom scattering factors were taken from Cromer and Waber [8]. Anomalous dispersion effects were included in F_{calc} [9], the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley [10]. The values for the mass attenuation coefficients are those of Creagh and Hubbel [11]. All calculations were


$(R = CH_2 Ph)$		21.1.)20(01.21.1)(01.1)	
Fe(2)-Fe(1)-P(1)	54.17(6)	Fe(2)-Fe(1)-P(2)	55.05(5)
Fe(2) - Fe(1) - C(1)	153.2(3)	Fe(2)-Fe(1)-C(2)	95.1(3)
Fe(2) - Fe(1) - C(3)	98.7(3)	P(1)-Fe(1)-P(2)	66.82(7)
P(1) - Fe(1) - C(1)	107.6(3)	P(1)-Fe(1)-C(2)	149.3(3)
P(1) - Fe(1) - C(3)	92.6(3)	P(2)-Fe(1)-C(1)	101.3(3)
P(2) - Fe(1) - C(2)	96.6(3)	P(2) - Fe(1) - C(3)	152.7(3)
C(1) - Fe(1) - C(2)	100.7(4)	C(1) - Fe(1) - C(3)	102.0(4)
C(2)-Fe(1)-C(3)	92.8(4)	Fe(1) - Fe(2) - P(1)	53.77(5)
Fe(1)-Fe(2)-P(2)	53.58(5)	Fe(1)-Fe(2)-C(4)	153.7(3)
Fe(1)-Fe(2)-C(5)	98.7(3)	Fe(1)-Fe(2)-C(6)	96.9(3)
P(1)-Fe(2)-P(2)	65.93(7)	P(1)-Fe(2)-C(4)	104.6(3)
P(1) - Fe(2) - C(5)	150.9(3)	P(1)-Fe(2)-C(6)	95.9(3)
P(2)-Fe(2)-C(4)	106.5(3)	P(2)-Fe(2)-C(5)	90.8(3)
P(2) - Fe(2) - C(6)	150.3(3)	C(4) - Fe(2) - C(5)	98.5(4)
C(4) - Fe(2) - C(6)	100.6(4)	C(5) - Fe(2) - C(6)	97.1(4)
Fe(1) - P(1) - Fe(2)	72.07(7)	Fe(1) - P(1) - N(1)	126.5(2)
Fe(1) - P(1) - C(19)	97.5(2)	Fe(2) - P(1) - N(1)	135.6(2)
Fe(2) - P(1) - C(19)	95.3(2)	N(1) - P(1) - C(19)	117.7(3)
Fe(1) - P(2) - Fe(2)	71.37(6)	Fe(1) - P(2) - N(2)	127.3(2)
Fe(1)-P(2)-C(19)	97.6(2)	Fe(2) - P(2) - N(2)	132.9(2)
Fe(2) - P(2) - C(19)	94.4(2)	N(2)-P(2)-C(19)	120.2(3)
P(1)-N(1)-C(7)	118.6(5)	P(1)-N(1)-C(10)	123.9(5)
P(2)-N(2)-C(13)	123.6(5)	P(2)-N(2)-C(16)	119.7(5)
Fe(1)-C(1)-O(1)	178.7(8)	Fe(1)-C(2)-O(2)	176.7(8)
Fe(1)-C(3)-O(3)	177.5(8)	Fe(2)-C(4)-O(4)	179.4(9)
Fe(2)-C(5)-O(5)	178.8(8)	Fe(2) - C(6) - O(6)	178.3(9)
P(1)-C(19)-P(2)	79.6(3)	P(1)-C(19)-O(7)	115.9(4)
P(1)-C(19)-C(20)	112.3(4)	P(2)-C(19)-O(7)	114.7(5)
P(2)-C(19)-C(20)	123.0(5)	O(7)-C(19)-C(20)	108.9(5)

Selected bond angles (°) for (ⁱPr₂NP)₂C(CH₂Ph)(OH)Fe₂(CO)₆ (II)


Table 4 Geometries of CP_2Fe_2 cages in organophosphorus iron carbonyl derivatives


	Value for the following compounds					
	$\overline{\mathbf{II} (\mathbf{R} = \mathbf{CH}_2 \mathbf{Ph})}$	III	V	I	VI	IV
P-C-P (°) P-Fe-P (°)	79.6(3) 66.82(7) 65.93(7)	78.5(5) 65.1(1) 64.8(2)	83.7(4) 65.70(6) 65.97(6)	84.4(4) 69.60(9) 69.48(9)	84.6(6) 69.0(1) 68.9(1)	85.7(4) 69.5(1) 69.6(1)
P–C (Å)	1.903(7) 1.911(6)	1.88(1) 1.91(1)	1.836(6)	1.884(9) 1.895(10)	1.875(9) 1.878(9)	1.88(1) 1.87(1)
Fe-P (Å)	2.219(2) 2.216(2) 2.260(2) 2.227(2)	2.226(3) 2.228(3) 2.239(4) 2.230(4)	2.258(2) 2.250(2)	2.227(3) 2.220(3) 2.224(3) 2.230(3)	2.228(4) 2.228(4) 2.228(4) 2.236(4)	2.266(3) 2.209(4) 2.249(4) 2.221(4)
Fe−Fe (Å) P · · · P (Å)	2.613(2) 2.442(2)	2.612(3)	2.574(2) 2.445(3)	2.603(2)	2.623(2) 2.525(4)	2.593(3) 2.550(4)

IV

performed using the teXsan [12] crystallographic software package of Molecular Structure Corporation.

The crystal data for $({}^{i}Pr_{2}NP)_{2}C(CH_{2}Ph)(OH)Fe_{2}-(CO)_{6}$ (II) (R = CH₂Ph) are summarized in Table 1 and its structure is depicted in Fig. 1. Bond distances and angles are given in Tables 2 and 3 respectively.

3. Results and discussion

The reaction of $({}^{i}Pr_{2}NP)_{2}COFe_{2}(CO)_{6}$ (I) with the benzyllithium obtained from PhCH₂SnPh₃ and *n*-BuLi to give the tertiary alcohol (¹Pr₂NP)₂C(CH₂Ph)(OH) $Fe_2(CO)_6$ (II) (R = CH₂Ph) is completely analogous to the previously reported reactions of (ⁱPr₂NP)₂COFe₂- $(CO)_6$ (I) with methyllithium and *n*-butyllithium [2]. The spectroscopic properties of $({}^{i}Pr_{2}NP)_{2}C(CH_{2}Ph)_{2}$ $(OH)Fe_2(CO)_6$ (II) (R = CH₂Ph) are completely analogous to those of the related tertiary alcohols prepared previously. In particular, the IR spectrum shows the same five $\nu(CO)$ frequencies in similar positions within ± 4 cm⁻¹. The ³¹P{¹H} spectrum of (ⁱPr₂NP)₂C- $(CH_2Ph)(OH)Fe_2(CO)_6$ (II) $(R = CH_2Ph)$ exhibits a single singlet, indicating equivalence of both phosphorus atoms. The $\delta = 192.0$ ppm ³¹P chemical shift can be compared with the ³¹P chemical shifts of $\delta = 187.4$ and 189.4 for the related tertiary alcohols II (R = Me and *n*-Bu respectively).

The structure II ($R = CH_2Ph$) for $({}^{i}Pr_2NP)_2C$ - $(CH_2Ph)(OH)Fe_2(CO)_6$ has been confirmed by X-ray diffraction (Fig. 1). Of particular interest is the comparison of the shape and dimensions of the CP₂Fe₂ cages in the diisopropylaminophosphorus derivatives II (R =CH, Ph) and $[(^{i}Pr, NP)_{2}CHSiMe_{3}]Fe_{2}(CO)_{6}$ (III) [13] with sp³ carbon atoms bridging the two phosphorus atoms and I and $({}^{i}Pr_{2}NP)({}^{t}Bu_{2}PP)COFe_{2}(CO)_{6}$ (IV) [14] with sp² carbonyl carbon atoms bridging the two phosphorus atoms (Table 4). In this connection the compounds with $P-C(sp^3)-P$ bridges (II and III) have P-C-P bond angles in the range 78-80° and P-Fe-P bond angles in the range 64-67° whereas the compounds with $P-C(sp^2)-P$ bridges (II and IV) have wider P-C-P bond angles (84-86°) and P-Fe-P bond angles $(69-70^\circ)$ although these bond angles remain

acute in all cases (Table 4). This widening of P-C-P bond angles in the CP₂Fe₂ cage in going from sp³ to sp² carbon bridges also appears to be accompanied with an increase in the formally non-bonded P \cdots P distances from 2.442(2) Å in II (R = CH₂Ph) to 2.525(4) Å in IV. In IV this formally non-bonded P \cdots P distance in the CP₂Fe₂ unit can be compared with the 2.199(4) Å formal P-P single bond from the terminal ^tBu₂P unit to a CP₂Fe₂ phosphorus atom. The P-C, Fe-P and Fe-Fe bond lengths in the CP₂Fe₂ cages in the series of compounds I, II (R = CH₂Ph), III and IV do not appear to be affected significantly by the hybridization of the P-C-P carbon atom.

Structural data are also available in the literature for the CP_2Fe_2 cages in the compounds (2,4,6- ${}^{1}Pr_{3}C_{6}H_{2}P)_{2}CH_{2}Fe_{2}(CO)_{6}$ (V) [15] and $({}^{1}BuP)_{2}$ - $COFe_2(CO)_6$ (VI) [16]. The bond lengths and angles in the CP_2Fe_2 cage of VI are similar within experimental error to those of I, indicating relatively little effect in substituting terminal tert-butyl groups for terminal 'Pr₂N groups. However, the shape of the CP_2Fe_2 cage in V with terminal bulky aryl groups is significantly different from that of the CP_2Fe_2 cages in II (R = CH₂Ph) and III despite the presence of P-C(sp³)-P bridges in all cases. The CP_2Fe_2 cage of V thus has a wide P-C-P angle $(83.7(4)^{\circ})$ close to those found in the phosphorus-bridging carbonyls I, IV and VI despite an sp^3 bridging carbon atom in V and sp^2 bridging carbon atoms in I, IV and VI. This widening of the P-C-P bond angle in V appears to be a geometric consequence of the relatively short P–C cage bonds in V (1.836(6))Å) compared with the P--C cage bonds (1.87-1.91 Å)in the other compounds.

References

- Y.W. Li, M.G. Newton and R.B. King, J. Organomet. Chem., 488 (1995) 63.
- [2] R.B. King, F.-J. Wu and E.M. Holt, J. Am. Chem. Soc., 110 (1988) 2775.
- [3] D. Seyferth and M. Weiner, J. Org. Chem., 26 (1961) 4797.
- [4] F.J. Kronzer and V.R. Sandel, J. Am. Chem. Soc., 94 (1972) 5750.

- [5] R.B. King, F.-J. Wu and E.M. Holt, J. Am. Chem. Soc., 109 (1987) 7764.
- [6] M.C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, G. Polidori, R. Spagna and D. Viterbo, J. Appl. Crystallogr., 22 (1989) 389.
- [7] P.T. Beurskens, G. Admiraal, G. Beurskens, W.P. Bosman, S. Garcia-Granda, R.O. Gould, J.M.M. Smits and C. Smykalla, *Techn. Rep.*, 1992 (Crystallography Laboratory, University of Nijmegen).
- [8] D.T. Cromer and J.T. Waber, International Tables for X-ray Crystallography, Vol. IV, Kynoch, Birmingham, 1974, Table 2.2 A.
- [9] J.A. Ibers and W.C. Hamilton, Acta Crystallogr., 17 (1964) 781.
- [10] D.C. Creagh and W.J. McAuley in A.J.C. Wilson (ed.), Interna-

tional Tables for Crystallography, Vol. C, Kluwer, Boston, MA, 1992, pp. 216-292, Table 4.2.6.8.

- [11] D.C. Creagh and J.H. Hubbell, in A.J.C. Wilson (ed.), International Tables for Crystallography, Vol. C, Kluwer, Boston, MA, 1992, pp. 200-206, Table 4.2.4.3.
- [12] teXsan: Crystal Structure Analysis Package, Molecular Structure Corporation, 1985, 1992.
- [13] V. Kumar, M.G. Newton and R.B. King, J. Organomet. Chem., 472 (1994) C13.
- [14] R.B. King, N.K. Bhattacharyya and E.M. Holt, J. Organomet. Chem., 394 (1990) 305.
- [15] F. Bitterer, D.J. Brauer, F. Dörrenbach and O. Stelzer, J. Organomet. Chem., 399 (1990) C4.
- [16] R.L. De, D. Walters and H. Vahrenkamp, Z. Naturforsch., 41b (1986) 283.